Asymptotic behavior for an almost periodic, strongly dissipative wave equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Stochastic Strongly Wave Equation on Unbounded Domains

We study the asymptotic behavior of solutions to the stochastic strongly damped wave equation with additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence of a random attractor.

متن کامل

Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise

In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the existence of a compact random attractor for the random dynamical system associated with the equation.

متن کامل

Asymptotic Behavior for Asymptotically Periodic

The properties of ω-limit set and global asymptotic behavior are first obtained for asymptotically autonomous discrete dynamical processes on metric spaces.Then certain equivalence of the asymptotic behavior between an asymptotically periodic semiflows and its associated asymptotically autonomous discrete dynamical process is proved. As some applications, the global behavior of asymptotically p...

متن کامل

Periodic almost-Schrödinger equation for quasicrystals

A new method for finding electronic structure and wavefunctions of electrons in quasiperiodic potential is introduced. To obtain results it uses slightly modified Schrödinger equation in spaces of dimensionality higher than physical space. It enables to get exact results for quasicrystals without expensive non-exact calculations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1980

ISSN: 0022-0396

DOI: 10.1016/0022-0396(80)90017-0